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Tool wear condition monitoring (TCM) is essential for milling process to ensure the machin-
ing quality, and the long short-term memory network (LSTM) is a good choice for predict-
ing tool wear value. However, the robustness of LSTM- based method is poor when cutting 
condition changes. A novel method based on data fusion enhanced LSTM is proposed to 
estimate tool wear value under different cutting conditions. Firstly, vibration time series sig-
nal collected from milling process are transformed to feature space through empirical mode 
decomposition, variational mode decomposition and fourier synchro squeezed transform. 
And then few feature series are selected by neighborhood component analysis to reduce 
dimension of the signal features. Finally, these selected feature series are input to train the 
bidirectional LSTM network and estimate tool wear value. Applications of the proposed 
method to milling TCM experiments demonstrate it outperforms significantly SVR- based 
and RNN- based methods under different cutting conditions.

Highlights Abstract

A data fusion- LSTM is proposed to estimate tool • 
wear under different cutting conditions.

NCA is used to select useful features fusioned by • 
EMD VMD and FSST.

Experimental results show the proposed method • 
outperforms significantly SVR and RNN.

Tool wear condition monitoring in milling process based on data fusion 
enhanced long short-term memory network under different cutting  
conditions
Guoxiao Zheng a, Weifang Sun a, Hao Zhang b, Yuqing Zhou a,*, Chen Gao c,*

a College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, China, 325035 
b Shaoxing Customs, Shaoxing, China, 312099 
c School of Mechatronics and Transportation, Jiaxing Nanyang Polytechnic Institute, Jiaxing, China, 314031

Zheng G, Sun W, Zhang H, Zhou Y, Gao C. Tool wear condition monitoring in milling process based on data fusion enhanced long short-
term memory network under different cutting conditions. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2021; 23 (4): 
612–618, http://doi.org/10.17531/ein.2021.4.3.

Article citation info:

tool wear condition monitoring, empirical mode decomposition, variational mode decom-
position, fourier synchro squeezed transform, neighborhood component analysis, long 
short-term memory network.

Keywords

This is an open access article under the CC BY license 
(https://creativecommons.org/licenses/by/4.0/)

G. Zheng - 909936695@qq.com, W. Sun - vincent_suen@126.com, H. Zhang - jiyongxing@customs.gov.cn, Y. Zhou - zhouyq@wzueducn,  
C. Gao - gaochen_1993@163com

1. Introduction
In the modern numerical control milling process, tool condition is 

one of the key factors affecting the machining quality of workpiece 
[19, 22]. Tool breakage is the main cause of abnormal shutdown and 
lead to time lost and capital destroyed [27]. It has reported that severe 
tool failure causes at least 20% of abnormal downtime [4, 32]. How-
ever, traditional tool condition monitoring (TCM) methods are based 
on the machining time or the number of workpiece machined result-
ing in the effective utilization rate of tool is only 50%-80%, which 
affect the processing efficiency and increase the machining cost sig-
nificantly [15, 35]. It is predicted that an effective TCM method can 
increase the cutting efficiency by 10-50% and reduce the machining 
cost by 10-40% [23, 33]. Therefore, the development of effective on-
line TCM method has received broadly positive reviews and is a re-
search hotspot nowadays [10, 11].

Recently, many deep learning models have been employed in 
TCM applications [9, 14, 21]. For example, Cao et al [1] recognized 
tool wear condition by derived wavelet frames and Convolutional 

neural network (CNN) using vibration signals. Recent advanced tech-
nology that have greatly increased the number of TCM study, Huang 
et al [8] proposed a tool wear predicting method by deep CNN, in 
which multi- domain features are respectively extracted from cutting 
force and vibration. Lei et al [16] employed Extreme learning ma-
chine (ELM) to classify tool wear condition in milling processes, and 
used genetic algorithm and particle swarm optimization to optimize 
model parameters of ELM. Tim and Chris [26] proposed a disen-
tangled- variation- autoencoder CNN method to estimate tool wear 
condition in a self-supervised way. Zhi et al [30] proposed a hybrid 
CNN and edge-labeling graph neural network (EGNN) method for 
limited tool wear image training samples, in which the CNN is em-
ployed to extract features of tool wear image and the EGNN is ap-
plied to distinguish the tool’s category. However, these TCM methods 
have been generally applied for diagnosis (classification) rather than 
prognosis (regression), tool wear is a progressive and continuous cu-
mulative process, regressive prediction of tool wear is more suitable 
than classification that the CNN- based methods are difficult to use 
[34]. Recurrent neural networks (RNN) could be solve the problem 
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of regression and increase the accuracy of the prognosis, but the er-
ror of backpropagation in RNN would increase sharply or decrease 
exponentially, which lead to the problem of long lag [5,18]. As a sig-
nificant branch of RNN, Long short-term memory (LSTM) network 
is proposed to overcome the above problem. Due to the special unit 
structure with learning long-term dependencies, LSTM can deal with 
the long-distance dependence problem in time sequence data [6]. 
Therefore, LSTM is potential to obtain good performance for TCM 
[31]. Tao et al [24] designed a TCM method based on LSTM and hid-
den Markov model (HMM) to estimate the tool wear value and predict 
it’s remaining useful life. Zhao et al [29] proposed a convolutional 
Bi-directional LSTM network, in which CNN extracted local feature 
of original signal and Bi-directional LSTM encoded temporal infor-
mation and predict tool wear value. However, it is found that the re-
gression accuracies of LSTM- based TCM method are poor when the 
cutting conditions of testing samples are different with that of training 
samples in our experiment. That is, the cutting condition could affect 
significantly the performance of LSTM- based TCM method. There-
fore, this paper try to alleviated the influence of cutting condition to 
LSTM model through a data fusion way.

In this paper, a data fusion enhanced LSTM- based TCM method is 
established to estimate tool wear value under variable cutting condi-
tions. The paper is organized as follows: Section 2 introduces the pro-
posed data fusion enhanced LSTM method, Section 3 describes the 
experimental setup, data analysis and experimental results. Finally, 
conclusion is in Section 4.

2. Proposed method

2.1. Framework of the proposed method
The proposed TCM method framework based on data fusion en-

hanced LSTM is illustrated in Figure 1. Firstly, vibration time series 
signal collected from milling process are transformed to feature space 
through Empirical mode decomposition (EMD), Variational mode de-
composition (VMD) and Fourier synchro squeezed transform (FSST), 
and then few feature series are selected by neighborhood component 
analysis (NCA) to reduce dimension of the signal features. Finally, 
these new feature series selected by NCA are input into bidirectional 
LSTM network to train the regression model.

Fig. 1. Framework of the data fusion enhanced LSTM- based TCM method

2.3. Data preprocessing 
For extracting more features of time series under limited sam-

ples, the collected signals are divided into multiple segments using 
a sliding window method. In addition, these segmented data are nor-
malized by batch normalization method [17] as follows: 
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where xi and yi denote the input and output value after batch normali-
zation respectively, m denotes the number of inputs in minibatch, µB 
and σB denote the mean of input and the average variance of the input 
respectively, ˆix is the normalized ix .

2.3. Feature extraction

2.3.1. Empirical mode decomposition
EMD is a nonlinear time-frequency decomposition algorithm that 

decompose the signal into several intrinsic mode functions (IMFs) 
and a residual [7], shown in Equation (4). In EMD, all decomposed 
IMFs contain the local feature information in different time scales of 
the original signal. Finally, each IMF contains approximately a single 
frequency component, and the instantaneous frequency of the original 
signal can be obtained after the weighted average of the instantaneous 
frequency of each IMF:
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EMD decomposes the signal according to the time scale features 
of the original data, without pre-setting any basis function, which is 
the most significant advantage compared with other time-frequency 
decomposition methods, such as wavelet transform. Due to the com-
plexity and uncertainty of milling process, it is very difficult to find a 
basis function suitable for milling signal, EMD could be employed for 
feature extraction in milling TCM.

2.3.2. Variational mode decomposition
VMD is an adaptive time-frequency signal decomposition algo-

rithm, its framework is the solution of variational problems [3]. VMD 
considers the signal is composed of sub signals with different frequen-
cies dominant, and transforms the decomposition of signal into the 
solution of constrained variational model [13,28]. In this process, the 
central frequency and bandwidth of each IMF are updated alternately 
and iteratively. Finally, the signal band is decomposed adaptively and 
obtain the preset K narrowband IMFs in equation (5).
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In VMD, each IMF uk is a bandwidth limited frequency modulation 
and amplitude modulation signal shown in equation (6):

 u t A t tk k k( ) ( )cos ( )= ( )φ  (6)

VMD has perfect mathematical theory support, its essence is an 
adaptive optimal Wiener filter group, which can get high signal-to-
noise ratio IMFs.
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2.3.3. Fourier synchro squeezed transform
Fourier synchro squeezed transform (FSST) is based on the short-

time Fourier transform (SFT) implemented in the spectrogram func-
tion [12,25]. The FSST function determines the SFT of a function, f 
using a spectral window, g, and computing in equation (7):

 V f t f x g x t e dxg
j x t( , ) ( ) ( ) ( )η πη= −

−∞
∞ − −∫ 2  (7)

Unlike the conventional definition, this definition has an extra fac-
tor of e j t2πη . The transform values are then “squeezed” so that they 
concentrate around curves of instantaneous frequency in the time-
frequency plane.  

2.3.4. Neighborhood component analysis
Neighborhood component analysis (NCA) is a distance metric 

method in metric learning and dimension reduction fields [2]. NCA 
is based on K-Nearest Neighborhood (KNN) including feature pa-
rameters and response label [20]. NCA selects randomly neighbors, 
obtains the transformation matrix in Mahalanobis distance by opti-
mizing the results of the leave-one-out cross validation (LOOCV) 
method, and finds the feature parameter set maximizing the average 
LOO classification / regression accuracy to achieve the purpose of 
feature selection. 

2.4. Long short-term memory network
An LSTM network is a type of RNN that can learn long-term de-

pendencies between time steps of sequence data [6,29]. The frame-
work of LSTM is shown in Figure 2.

Let Xt={X1t X2t  XCt} is a time series with C features, ht and ct are 
the hidden state and cell state at time t, respectively. At time t, the state 
of the network (ct ht) is calculated by Xt and (ct−1 ht−1) by Equation 
(8) and (9):

 c ct t t t tf i g= +− 1  (8)

 h ct t c to= ( )σ  (9)

The definition and expression of it ft gt ot are as shown in Table 1.

3. Experimental observation and research

3.1. Experimental setup 
The experimental device for milling TCM is shown in Figure 3. 

In the milling TCM experiment, a CNC milling machine (DMTG 
VDL850A, China) is used to finish milling process, and a piece of 
#45 steel (30 cm ×10 cm × 8 cm) is used as the workpiece material. 
What’s more, the milling vibration signals of spindle X and Y direc-
tions are acquired by two accelerometers with a signal acquisition 
device (ECON Dynamic Signal Analyzer, shown in Figure 3(b)). In 
addition, the signal sampling frequency in the experiment is 12KHz.

Fourteen uncoated three-insert tungsten steel end milling cutters 
with diameter of 10 mm are employed to mill the workpiece under 
different cutting conditions, listed in Table 2. For each tool, the work-
piece is milled surface 10 times, and the tool wear value is measured 
after milling each surface using a tool microscope (GP-300C Figure 
3(c)). The length of rake face wear (KB) is employed as the tool wear 

criterion in the experiment, and the max value KB= max (KB1 
KB2 KB3) of three inserts is adopted as the final tool wear value. 
Figure 4 illustrates the tool wear conditions after milling the 
workpiece surface 1-st, 5-th and 10-th times. 

In the 14 milling TCM experiments, the training, verification 
and testing sets are generated randomly shown in Table 2, 7 sets 
of samples for training, 3 sets of samples for verification, and 4 
sets of samples for testing.

3.2.  Results and analysis  

3.2.1.  Samples and metrics
Acceleration signals of Spindle X and Y direction are used in 

the network, 272 training set, 120 validations set, and 80 test set 
are made up from spindle sensor signals. In all analyzed sam-
ples, there is no same cutting condition combination in the three 
dataset. Besides, in the signal pre-processing, the original signal 
of each sample is divided into 10 parts by slide window method, 
in which the window size is 2000 points, and the sliding dis-
tance is 1000 points.

To evaluate the performance of the proposed method, three 
indexes are employed, including the mean absolute error (MAE), 
root mean squared error (RMSE), and R-squared (R2).

Table 1. Definition and expression of the LSTM layer gate

Component Purpose Formula

Input gate (i) Control level of cell state update i W bt g i t i t i= + +( )−σ x hR 1

Forget gate (f) Control level of cell state reset (forget) f W bt g f t f t f= + +( )−σ x hR 1

Cell candidate (g) Add information to cell state g W bt c g t g t g= + +( )−σ x hR 1

Output gate (o) Control level of cell state added to hidden state o W bt g o t o t o= + +( )−σ x hR 1

where Wt and Rt are the input weights and recurrent weight in the t-th layer, and bk is the bias of each component. 

Fig. 2. LSTM architectures
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3.2.2.  Algorithm settings
For each cutting process in the experiment, there are two mutually 

perpendicular milling vibration signals which are collected from the 
equipment and a part of collected signal has 12000 points as shown in 
Figure 5, in which the corresponding cutting parameters is the Case 1 

in Table 2: spindle speed is 2300 rpm, axial cutting depth is 4 mm, and 
feed rate is 400 mm/min. 

Since the real monitoring signal is often nonlinear and non-station-
ary, it is suitable to use the EMD, VMD and FSST methods to obtain 
the features of vibration signals for tool wear. In order to obtain signal 

Table 2. Experimental cutting parameters

Case No Spindle speed (rpm)  Axial cut deep (mm) Feed speed (mm/min) Dataset type

1 2300 0.4 400 Training

2 2300 0.5 450 Validation

3 2300 0.6 500 Testing

4 2400 0.4 450 Training

5 2400 0.5 500 Testing

6 2400 0.6 400 Validation

7 2500 0.4 500 Training

8 2500 0.5 400 Testing

9 2500 0.6 450 Training

10 2300 0.4 500 Testing

11 2300 0.6 400 Training

12 2500 0.6 500 Validation

13 2500 0.6 400 Training

14 2500 0.4 400 Training

Fig. 3. The experimental setup [16]

Fig. 4. Tool images indicative of different tool-wear values [33]

(a) Experimental platform (b) Data acquisition system (c) Tool microscope

(a) 1-st milling (b) 5-th milling (c) 10-th milling
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In this work, the first 6 IMFs and residualsare taken in EMD, 
the first 5 IMFs and residualsare taken in VMD, and 60 IMFs 
is decomposed in FSST. In addition, it is necessary to take the 
real and imaginary parts of the IMF as the feature matrix of the 
vibration signal, and use NCA to take the effective characteristic 
matrix. The results are listed in the Table 3

By calculating, it was found that the feature matrix has first 
6 numbers of IMFs and residuals of EMD, 5 numbers of IMFs 
and residuals of VMD, 17 real parts and 14 imaginary parts of 
FSST. Totally 45 feature matrixes as input signals. The two sin-
gle-channel experimental data of the sensor are superimposed 
and fused into a new sample. Meanwhile, all data from experi-
ments need batch normalization. 

In this model, it is a way to use eleven layers as neural net-
work architectures in our experiments: especially bidirectional 
LSTM layer, which has two hidden LSTM layers (forwards and 
backwards) as shown in Table 4.

Due to the limitations of experimental equipment conditions 
and cost, 14 sets of experiments were executed, 7 sets of sam-
ples under different working conditions were selected for train-
ing, 3 sets of samples were selected for verification, and 4 sets 
of samples were selected for testing.

For all architectures, complete error gradient was calculated and 
the weights are trained by using gradient descent with momentum. 
In all experiments, the same training parameters were kept: randomly 
assigned initial weights, keeping the training algorithm and param-
eters constant, allowing us to focus on the impact of changing the 
architecture.  

3.2.3. Experimental results 
The LSTM model established by the training set and verification 

set is applied to predict the testing set, including 4 tools with different 
cutting conditions. In Figure 6, the blue, green, and cerulean dotted 
lines denote the prediction results using the proposed method with the 
spindle vibration signal of X-direction, Y-direction, and dual-direc-
tion (composition of X and Y directions). It is noted that the cutting 
parameters of the 5-th and 8-th tools are different. For Figure 6(a), the 
spindle speed is 2400 rpm, the axial cutting depth is 0.6 mm, and the 
feed rate is 500 mm/min. For Figure 6(b), the spindle speed is 2500 
rpm, the axial cutting depth is 0.5 mm, and the feed rate is 400 mm/
min. It can be seen that the trend of the overall predicted value is simi-
lar the actual wear value, and the error at some stages is less than 0.1 
or even close to the wear value.

To test the regression performance, the proposed method is com-
pared with RNN and support vector machine (SVR). As a result, the 
MSE, RMSE and R2 of three methods are presented in Table 5.

It can be seen from Table 5 that the proposed LSTM- based method 
is highly effective in improving the regression accuracy, the predic-
tion accuracy of the proposed method is much higher than that of 
RNN and SVR according to the values of three evaluation indexes, 
except for the X- direction signal of the 3-rd and 5-th tools. In addi-
tion, the prediction accuracies with the dual- direction signal outper-
form that of signal- direction except for the 3-rd tool, while the results 
of three indexes are slightly worse than that of two other methods in 
the 3-rd tool.

feature and more information from the vibration signal to predict the 
tool wear value, the original signal is transformed by EMD, VMD 
and FSST to expand the dimensionality. Furthermore, to remove ir-
relevant features and reduce the number of features, sensitive features 
that correlate well with tool wear are selected out through NCA.

Fig. 5. Original vibration signal

Fig. 6. Prediction results of tool wear: a) the 5-th tool, b) the 8-th tool

Table 3. Features selection

Characteristic Fourier synchro squeezed transform(Hz)

Real part characteristic  
frequency

0;938;1875;2813;375;4688;5625;6563;
750;8438;9375;103130;1125;12188;13125

14063;4500(Hz)

Imaginary part characteristic 
frequency

938;1875;2813;375;4688;5625;6563;
750;8438;9375;10313;1125;12188;4500(Hz)

Table 4. Network architectures

Serial number Name Type Serial number Name Type

1 sequenceinput Sequence input 7 dropout_2 20% dropout

2 biLSTM_1 BILSTM：300 hidden units 8 fc_1 1 fully connected layer

3 relu_1 ReLU 9 dropout_3 20% dropout

4 dropout_1 20% dropout 10 fc_2 1 fully connected layer

5 biLSTM_2 BILSTM：300 hidden units 11 Regression output mean-squared-error: Re-
sponse

6 relu_2 ReLU

b)

a)
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4. Conclusion
This paper proposed a novel method based on data fusion enhanced 

LSTM to estimate tool wear value under different cutting conditions. 
Firstly, the original vibration signals are decomposed and transformed 
to obtain high-dimensional feature series set through EMD, VMD 
and FSST, and then NCA is employed to select useful features and 

Table 5. Prediction results of LSTM and RNN and SVR

Vibration signal Tool
MAE RMSE R−Squared

LSTM SVR RNN LSTM SVR RNN LSTM SVR RNN

Spindle X- direction

3 0.2150 0.5091 0.1222 0.2572 0.6160 0.1490 0.7996 −0.1498 0.9328

5 0.1508 0.5518 0.1127 0.1741 0.6443 0.1396 0.9091 −0.2456 0.9415

8 0.1153 0.4822 0.2507 0.1483 0.5824 0.2669 0.8971 −0.5871 0.6667

10 0.1762 0.4686 0.3688 0.2063 0.6246 0.4857 0.8039 −0.7978 −0.0868

Spindle Y- direction

3 0.2829 0.3989 0.2572 0.3327 0.4891 0.4811 0.6647 0.2829 0.3989

5 0.1437 0.6037 0.2458 0.1813 0.7576 0.4740 0.9014 0.1437 0.6037

8 0.1661 0.5130 0.6122 0.2159 0.7089 0.7402 0.7819 0.1661 0.5130

10 0.1681 0.5639 0.6996 0.1985 0.6385 0.7295 0.8184 0.1681 0.5639

Spindle dual- direction

3 0.2413 0.4406 1.0053 0.2944 0.5219 1.1609 0.7373 0.1749 −0.3083

5 0.0738 0.5407 1.0043 0.0974 0.6101 1.2031 0.9715 −0.1169 −0.3344

8 0.1031 0.3976 0.9307 0.1332 0.5097 1.0576 0.9169 −0.2158 −0.4234

10 0.1404 0.5002 0.778 0.1691 0.5853 0.9284 0.8683 −0.5786 −0.2971

reduce the feature dimension, in order to reduce operational burden 
and improve the accuracy of regression. Finally, these selected feature 
series are input into bidirectional LSTM network to estimate tool wear 
value. Hence, applications of the proposed method to milling TCM 
experiments demonstrate it outperforms significantly SVR- based and 
RNN- based methods under different cutting conditions.
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